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Geometry Education 

In this article, I intend to give some understanding of the current state of research in 

Geometry Education, focusing on K-12 education. I will be using the notion of Geometry in the 

sense of Clements (2003) as: 

“the study of spatial objects, relationships, and transformations; their mathematization 

and formalization; and the axiomatic mathematical systems which have been constructed 

to represent them.” 

By Geometry Education, I mean the formal education system aimed at teaching 

Geometry. Geometry Education Research refers to the set of literature, including normative, 

empirical and theoretical research, which deals with Geometry Education. 

While Geometry as the study of spatial objects, relationships and transformations has 

been an active area of inquiry for a very long time, the rest of Clements’ definition is relatively 

new. In order to get an understanding of Geometry, Geometry Education, and Geometry 

Education Research, it is important to get some understanding of the changing conceptions of 

Geometry.  

I will start this article by giving a quick history of geometry including the various 

conceptions of what geometry is across space and time. I will then move on to describing some 

general learning theories related to Geometry. Then, I will talk about how various educational 

bodies across the world, such as the Common Core and NCERT, talk about Geometry Education 

and its goals. I will end with research addressing more specific aspects of Geometry Education. 

Some of the studies discussed will have implications for teaching. Those will be highlighted.  
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History of Geometry 

Geometry began in various parts of the world with measurement and relationships 

between different measurements such as length, angle, area, and volume. These relationships 

were determined empirically. Evidence for the existence of such geometry is found in Ancient 

Egypt, Babylon, China, Greece, and Vedic India (O’Connor & Robertson, n.d.; Lewy, 1949; 

Seidenberg, 1978). In most parts of the world, Geometry continued as a largely empirical 

science. For instance, as late as 7th Century India, Brahmagupta found the formula for cyclic 

quadrilaterals given the lengths of the sides (Weisstein, n.d.). However, he did not give a 

deductive proof for this claim. While these mathematicians were able to see geometric 

relationships and reason with them, they were not doing mathematics in the modern sense of the 

term. 

The birth of what looks like modern mathematics appeared to have happened in Greece 

(Seidenberg, 1978). Euclid employed deductive proofs from axioms and definitions in order to 

arrive at conclusions. He was already familiar with many of the conclusions – his enterprise was 

to create a coherent system with a small number of starting principles from which the rest of the 

system could be deduced. He viewed Geometry as explaining the world, and the axioms as self-

evident truths. 

While the first four axioms appeared to be true of the world he saw around him, the 

Parallel Postulate did not seem to be self-evident. One of the main goal of mathematicians in the 

Euclidean tradition for the next millennia was to prove the parallel postulate from the other four 

axioms. 

A significant effort was made by people such as the Arab Mathematicians al-Haytham 

and Omar Khayyam to prove the parallel postulate from a proof by contradiction (Katz, 1998). 
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This resulted in some interesting conclusions which would later be recognized as theorems in 

non-Euclidean geometries. It was only in the 19th Century that mathematicians started seriously 

exploring the alternatives to Euclidean Geometry. People like Lobachevsy and Bolyai (Bolyai 

and Lobochevsky, n.d.) were pioneers in this effort with their work in Acute Geometry, which 

was later developed into Hyperbolic Geometry by mathematicians like Riemann and Poincare 

(Cannon et al., 1997). Beltrami was the person who finally showed the independence of the 

Parallel Postulate from the other four (Eugenio Beltrami, n.d.).  

The Twentieth Century saw Hibert’s rigorous axiomatization of Euclidean Geometry 

(Hilbert, 1992). It also saw the development of various different types of Geometry and 

Topology. However, areas such as Differential Geometry are not usually a part of K-12 

education, and I will be ignoring those developments. There have also been some toy geometries 

developed in the last few centuries such as Paper-Folding Geometry (Rao, 1901) and Taxi-Cab 

Geometry (Krause, 1973) which have been used in K-12 education. 

 

Theories and Frameworks of Geometry Learning 

As mentioned in the introduction, I will be using Clements’ notion of Geometry. The 

valuable thing about this definition is that it doesn’t only involve the study of formal systems, 

but also involves getting an intuitive understanding of the objects of Geometry. 

In this section, I will be presenting a few major theories and theoretical frameworks for 

Geometry Learning. A few of them are not specific to geometry. However, they have been widely 

used in the domain. There are many other theories which have been applied to geometry 

education (Sinclair et al., 2016) including the Framework of Spaces for Geometric Work 

(Gomez-Chacon & Kuzniak, 2015), Prototype Theory (Hershkowitz, 1990; Fujita, 2012; Yu, 
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Barrett & Presmeg, 2009), the Theory of Variation (Leung, 2008; Leung, 2014), and the 

Conception, Knowing, Concept (cK¢) model (Balacheff, 2013; Gonzalez & Herbst, 2009), which 

I will not be touching on. 

Piaget and Inhelder’s Theory 

Piaget & Inhelder (2006) gave one of the first theories of how humans learn geometry. 

There are two major themes in their conception (Clements, 2003):  

1. Representations of space are constructed through the progressive organization of the 

student’s motor and internalized action. 

2. The progressive organization of geometric ideas follows a definite order that is more 

logical than historical. It starts with topology (continuity, etc.), followed by projective 

relations (rectilinearity) and finally Euclidean relations (parallelism, angle, distance, 

etc.). 

As Clements & Battista (1992) point out, there is evidence for the first claim but not for 

the second. Children do seem to use their bodies and hands to learn about shape. However, the 

the ordering of understanding hypothesized by Piaget and Inhelder doesn’t seem to exist. 

Children appear to have some Euclidean notions at a very early age. 

Van Hiele Model 

The van Hiele model of geometry learning, like Piaget and Inhelder’s, also involves an 

ordered set of levels through which students progress in their learning of geometry. The model is 

based on the following assumptions (Crowley, 1987; Clements, 2003): 

• Students proceed sequentially through levels, which cannot be skipped. 

• Progress depends more on the content and instruction than on age. 
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• Concepts which students understanding implicitly at one level become explicit at a 

higher level. 

• Each level has its own language and relations. 

• If the instruction is at a different level from that of the learner, learning will not occur. 

The model is sometimes described with four levels and sometimes with an additional 0 

level (Clements, 2003). The levels of the model are as follows (Crowley, 1987; Clements, 2003; 

Jones, 1998): 

1. (Level 0) Visualization: Students recognize geometric objects, but as wholes and 

not having components or properties 

2. (Level 1) Analysis: Students begin to see the characteristics of shapes, and these 

properties help them create a classification 

3. (Level 2) Informal Deduction: Students start seeing the relationships between 

properties, and informal arguments can be used to come to conclusions. Students 

can follow formal proofs, but not come up with them 

4. (Level 3) Deduction: Students can prove theorems deductively and see the 

significance of deduction, and can see the distinction between necessary and 

sufficient conditions 

5. (Level 4) Rigor: Students can work in a variety of axiomatic systems, allowing a 

higher level of abstraction. 

A large amount of curriculum around the world has been based on this model (Clements, 

2003). However, more recently, there has been a lot of criticism of the van Hiele levels, 

especially in relation to the nature and discreteness of the levels. Students have been found to 
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reason at various different levels at the same time, and go through the levels at different rates for 

different shapes (Burger & Shaughnessy, 1986; Clements, 2003). 

Tall and Vinner’s Concept Image & Concept Definition 

Tall & Vinner (1981) first made the distinction between Concept Image and Concept 

Definition. A concept definition is the actual definition of the concept, while the concept image is 

the set of associated pictures, properties, and other images associated with the concept. This 

distinction is important in two ways. Firstly, it points to the fact that students need a rich concept 

image in order to work with the concept – a definition is not sufficient. Secondly, it could be the 

case that there is conflict between the Concept Image and Definition. This will come up again 

when discussing defining. 

Fischbein’s Theory of Conceptual Figures 

Fischbein conceptualizes geometry as dealing with mental entities which possess both 

conceptual and figural aspects (Fischbein, 1993). Conceptual here means relating to a general 

class of objects based on their common features. Figural refers to our concrete realization of the 

concepts which include properties like shape, position, and magnitude. 

Geometrical reasoning, then, is characterized by the interaction between these two 

aspects (Marrioti, 1995; Jones, 1998). These can come into conflict and, according to Fischbein, 

a large part of geometry learning is to do with working through these conflicts. This will come 

up again when discussing defining. 

Realistic Mathematics Education 

Realistic Mathematics Education (RME) is committed to giving students ‘realistic’ 

problems. ‘Realistic’ here refers to problems which are experientially real in the mind of the 

student rather than problems which are to do with the real world (Van den Heuvel-Panhuizen & 
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Drijvers, 2014, pp. 521-525). Within the RME tradition is a particular activity called Guided 

Reinvention. The idea behind this is that students create a body of knowledge, which being 

guided by the instructor, rather than being given that body of knowledge (Wubbels, Korthagen, 

& Broekman, 1997). Gravemeijer (1999) laid down a framework for activities within RME. It 

consists of four types of activities: Situational, Referential, General, and Formal. As Zandieh & 

Rassmussen (2010) put it, situational activities involve students working towards mathematical 

goals in experientially real settings. Referential activities involve models-of which refer, 

implicitly or explicitly, to physical and mental activities in the original task settings. General 

activities involve models-for which involve interpretations and solutions independent of the 

original task setting. Finally, formal activities involve students reasoning in ways which result in 

the creation of a new mathematical reality. 

There is a lot of work in geometry in this tradition. One example at the high school level 

is Zandieh & Rasmussen (2010). I will discuss this further when talking about defining. Other 

examples I found, such as Dawkins (2015), deal with Geometry at the undergraduate level. 

Duval’s Cognitive Model of Geometrical Reasoning 

Duval (1998 as cited in Jones, 1998) proposes that that geometrical reasoning consists of 

three types of cognitive processes, namely: 

1. visualization processes such as the visual representation of a geometric statement 

2. construction processes using tools 

3. reasoning processes, particularly discursive processes, for the extension of 

knowledge, for explanation and proof 

These three are related but can be performed separately. For example, visualization 

doesn’t depend on construction. Also, even though visualization can help in finding a proof, it 
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can often be misleading. However, Duval points out that the synergy of these processes is 

important for proficiency in geometry. 

 

Formal Educational Stipulations for Geometry Education 

While discussing the educational literature, it is important to discuss the context in which 

that research is occurring, namely the stipulations for geometry education by educational bodies 

around the world. I will be using the examples of the US, India, Finland and Singapore. I picked 

the US and India since I have the most experience in these two educational systems. Finland and 

Singapore have been picked since they are regarded as having good mathematics curricula. 

Common Core Educational Standards (USA) 

The Common Core begins geometry in Kindergarten with students identifying, analyzing, 

comparing, and creating shapes. It move on to reasoning with and about shapes, and eventually 

to a more formal approach including proofs. The subheadings of the standards in K-8 (Common 

Core State Standards Initiative, n.d.-a) are: 

• Identify and describe shapes (Kindergarten) 

• Analyze, compare, create, and compose shapes (Kindergarten) 

• Reason with shapes and their attribute (Grades 1-3) 

• Draw and identify lines and angles, and classify shapes by properties of their lines and 

angles (Grade 4) 

• Graph points on the coordinate plane to solve real-world and mathematical problems 

(Grade 5) 

• Classify two-dimensional figures into categories based on their properties (Grade 5) 
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• Solve real-world and mathematical problems involving area, surface area, and volume 

(Grade 6) 

• Draw construct, and describe geometrical figures and describe the relationships 

between them (Grade 7) 

• Solve real-life and mathematical problems involving angle measure, area, surface area, 

and volume (Grade 7) 

• Understand congruence and similarity using physical models, transparencies, or 

geometry software (Grade 8) 

• Understand and apply the Pythagorean Theorem (Grade 8) 

• Solve real-world and mathematical problems involving volume of cylinders, cones, 

and spheres (Grade 8) 

The High School Geometry course (Common Core State Standards Initiative, n.d.-b)  

involves the concepts of congruence, similarity, right triangles, trigonometry, circles, expressing 

geometric properties with equations, geometric measurement and dimension, and modeling with 

geometry. These involve constructions, proofs, and applications of theorems to specific 

situations.  

National Council for Educational Research and Training (India) 

The position paper on the Teaching of Mathematics by the National Focus Group deals 

with setting the basis for Mathematics Education in India, at least for those schools associated 

with NCERT (National Council of Educational Research and Training (India), 2006). At the 

Primary level, the paper states the importance of dealing with non-number areas of mathematics 

such as shape, spatial understanding, and a vocabulary of relational words which extend the 

child’s understanding of space.  
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At the Upper Primary level, there is an emphasis on visualization and spatial reasoning, 

and also on students justifying conclusions at an informal level. At the Secondary stage, 

argumentation and proof become central to the curriculum, and geometry becomes more about 

reasoning with the shapes and space students already understand. 

Finnish Curriculum 

Finland has had significant success in various international mathematics tests like PISA. 

While there is not a lot stipulated centrally by an authority, and there is a lot of latitude for 

experimentation, there are a few key things students are expected to learn at various grade levels 

(Hemmi et al., 2017).  

Grades 1-2 focus on perceiving the 3 dimensional environment, and noticing, naming and 

classifying figure. In grades 3-6, build, draw examine and classify objects and figures, they learn 

more about particular shapes. They are familiarized with scale, including enlargement and 

reduction. In grades 7-9, they learn more about particular shapes, understand similarity and 

congruence, and work with 3D figures. 

In higher grades, students make observations and draw conclusions in geometry, they 

learn to solve practical problems using geometry, and they use technological tools in order to 

examine figures and solve application problems in geometry. 

Singapore Curriculum 

In Singapore, the mathematics curriculum at the primary level (grades 1-6) is based on a 

Problem Solving approach. The following represent the various aspects of their curriculum.  
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Figure 1 Singapore Curriculum 

The Singapore curriculum also has detailed learning outcomes for each year for 

Geometry. Post the 6th Grade, Singapore has various options for students to pursue mathematics 

at various levels. 

 

Research about Specific Aspects of Geometry Education 

While all of these systems have differences in how they are formulated, there is broad 

consistency in the goals. Visualization and reasoning about shapes and space (spatial reasoning) 

and more formal reasoning are two of the common themes which go through all of these. The 

more formal reasoning involves definitions, proofs and axiomatic systems. I will now spend 

some time describing the literature in these areas.  

I will also be talking about the role of non-Euclidean Geometries and of Technology in 

Education. There are other aspects of geometry, such as particular understandings related to 

particular objects and theories, coordinate geometry and its relationship to algebra, and the 

application of geometry outside of mathematics. I will not be focusing on these in this paper 

except for in relation to the other aspects mentioned above, given constraints of space. 
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Visualization & Spatial Reasoning 

Unlike proving and axiomatic systems, research into visualization and spatial reasoning 

has clear implications right from elementary school. Being able to reason about, and using, 

shapes and space is clearly a valuable tool for students to have in order for them to navigate the 

physical world (Clements, 1998). Using maps, deciding on the size of a container for some 

object, creating data visualizations, and creating computer graphics are some of the practical 

applications of what is often referred to as ‘spatial reasoning’. Clements & Battista (1992) define 

spatial reasoning as:  

the set of cognitive processes by which mental representations for spatial objects, 

relationships, and transformations are constructed and manipulated. 

Kinach (2012) says: 

Spatial thinking takes a variety of forms, including building and manipulating two and 

three dimensional objects; perceiving an object from different perspectives; and using 

diagrams, drawings, graphs, models, and other concrete means to explore, investigate, 

and understand abstract concepts such as algebraic formulas or models of the physical 

world. 

Importance of Spatial Reasoning. 

Hence, while spatial reasoning is not exactly the same thing as geometry, the two are 

closely related. Also, spatial reasoning is valuable far outside of geometry, including in other 

branches of mathematics and in other disciplines. In fact, research by cognitive scientists 

suggests that spatial reasoning plays an important role in predicting overall mathematics success, 

even more than scores in mathematics tests (Bruce & Hawes, 2015).  
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One important aspect of spatial reasoning is mental rotations of 2D and 3D shapes. 

Pazzaglia & Moe (2013) show that that the ability to mentally rotate objects correlates with map 

reading skills. Tolar, Lederberg & Fletcher (2009) showed its correlation with achievement in the 

Scholastic Assessment in Mathematics (SAT-M). Kyttälä & Lehto (2008) showed that mental 

rotation ability had a correlation with scores in geometry, word problems, and mental arithmetic.  

Recent research by Barbara Tversky (2019) suggests that spatial reasoning forms the 

ultimate foundations for reasoning and abstract thought. She claims that a lot of thinking 

involves the body. She even suggests that the concept of number, representations of numbers, 

and algebraic thinking and representations are grounded in spatial thinking.  

Teaching and Learning of Spatial Reasoning. 

While these studies indicate the importance of mental rotation and spatial reasoning more 

generally, they wouldn’t have significant educational implications if these abilities were not 

trainable. However, as Uttal et al. (2013) shows in their meta-analysis, training is possible, and 

training transfers to tasks which have not been directly trained for. Their analysis also shows that 

the training is durable. The training they analyzed included video games, courses aiming at 

spatial reasoning generally, and spatial task training aiming as specific spatial skills. All of these 

appeared to have the desired effects.  

I will now highlight a few examples of pieces of research to give a sense of the various 

teaching interventions related to Spatial Reasoning. 

Bruce & Hawes (2014) showed that simple tasks of 2D and 3D mental rotation can have 

a significant impact on students’ mental rotation abilities. This can happen with children even as 

young as 5. The tasks involved finding rotated versions of a given object, working with 
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interlocking cubes to create complex objects, and working on various other tasks involving 

orientation and position. 

Symmetry is another important concept in spatial reasoning (Ng & Sinclair, 2015). 

Clements (1998) suggests that students start in Pre-K with creating shapes that have line 

symmetry. By the 2nd grade, they should be able to identify where the mirrors should be placed in 

order to break a shape into its symmetrical parts.  

The learning of symmetry can be supplemented by tools such as rulers (Perrin-Glorian, 

Mathe, & Leclerc, 2013 as cited in Ng & Sinclair 2015) or by computer software (Battista, 2008; 

Clements, 2002; Edwards & Zaskis, 1993). The former can draw attention to specific aspects of 

symmetry such as the sides of a shape, while the latter has many benefits. Students using 

geometry software can see transformations occurring and view the symmetry. It can give 

students a dynamic view of symmetry (Ng & Sinclair, 2015). In their study with elementary 

school students, Ng & Sinclair (2015) showed that dynamic geometry environments along with 

mediation from a teacher can result in the creation of new language and gestures to communicate 

effectively about symmetry.  

Mamolo et al. (2015) give a framework for the learning of various aspects of spatial 

reasoning. They suggest that this framework is useful at all levels. The framework consists of a 

network of concepts and tasks related to those concepts, which allows traversal in various 

different ways. Each node of the network consists of consists of a network of Key 

Developmental Understandings (KDUs), conceptual blending, and scaffolding. KDUs identify a 

qualitative shift in how students think about mathematical concepts and relationships (Mamolo et 

al., 2015; Simon, 2006). Conceptual blending refers to the bringing together of two 

representations and ways of reasoning. 
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Proof 

 In his book How to Solve It (1990), Polya, referring to a proof that the sum of the angles 

of a triangle is two right angles, writes: 

If a student has gone through his mathematics classes without having really understood a 

few proofs like the foregoing one, he is entitled to address a scorching reproach to his 

school and to his teachers. In fact, we should distinguish between things of more and less 

importance. If the student failed to get acquainted with this or that particular geometric 

fact, he did not miss as much; he may have little use for such facts in later life. But if he 

failed to get acquainted with geometric proofs, he missed the best and simplest examples 

of evidence and he missed the best opportunity to acquire the idea of strict reasoning. (pg. 

216-7) 

High School Euclidean Geometry focusing on proofs begin in the United States in the 

late 19th Century (Herbst, 2002). The idea behind it was similar to that in Polya’s quote above – 

to develop certain abilities in students rather than just focusing on knowledge transfer. Herbst 

shows how this ideal, due to practical considerations, eventually resulted in a disassociation 

between proving and knowledge construction with the advent of 2 column proofs. 

As Weiss & Herbst (2015) point out, the current High School geometry course is often 

students’ first introduction to proof, and sometimes their only example of proof in High School. 

Proof is rarely touched before High School. So, the discussion which follows will be constrained 

to that level. As many have pointed out, at least in the United States, the Geometry course is a 

caricature of actual mathematics, where form triumphs over substance, there are too many 

postulates, and there is a lack of clarity in the meanings of words (Christofferson, 1930; Usiskin, 

1980; Weiss & Herbst, 2015; Weiss, Herbst, & Chen, 2009).  
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There are many concepts of what constitutes a Proof in the literature (Weber, 2014). 

Harel & Sowder (1998) introduce the notion of a Proof Scheme, i.e., the criteria by which an 

argument is considered convincing. They suggest that there are broadly three proof schemes: 

authoritative, empirical and deductive. Within deductive proofs, there are symbolic, formal 

proofs and axiomatic deductive proofs. Within the Proof Scheme framework, a mathematical 

proof is one which is convincing to mathematicians.  

Weber & Alcock (2009) defined proofs as arguments within a representational system. 

Stylianides (2007) requires that proofs should be deductive and in an age-appropriate 

representation system. Hence, a proof is only one when it is understandable to the audience it is 

intended for.  

Weber (2014) argues that all of these definitions are incomplete and too specific of since 

they are neither necessary nor sufficient in practice. He suggests an alternative conception of 

proof which could be thought of as a theory of proof. In this conception, the notion of proof is 

characterized and constrained by certain propositions, which are a combination of the 

conceptions mentioned above. An argument which satisfies all of those is definitely a proof, 

while an argument which doesn’t satisfy any is not. Things in between such as picture proofs in 

geometry and topology are controversial. 

It is also important to point out here that, as Weber et al. (2014) says, mathematicians 

themselves do not necessarily gain conviction about results through deductive proofs. In fact, 

many mathematicians will often use authority and/or empirical means to get convinced about 

results before using them since it would be impossible for them to work through detailed proofs 

for each result. Hence, the goal of proof education need not necessarily be that students prove 

every result, but that they see the value of deductive proof. 
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Before moving into curriculum and teacher implications of research, it would be useful to 

look at how students understand proof.  

Student Understanding of Proof. 

Schoenfield (1986) shows a surprising result regarding students understanding of proof 

after their geometry course – students saw empirical methods as determining truth, while 

deductive arguments were just exercises teachers gave them. Knuth & Elliot (1998) found that 

even those students who would be considered sophisticated mathematically gave empirical 

justifications. This has been shown again and again in various studies such as Harel & Sowder 

(2007) and Martinez & Pedemonte (2014).  

In another study by Martin & Harel (1989), fifty two percent of student teachers accepted 

an incorrect deductive argument as a proof for an unfamiliar statement. Fischbein & Kedem 

(1982) and Harel & Sowder (2007) found that even after accepting a deductive argument, high 

school students saw room for potential counter-examples, while Galbraith (1981) found that over 

a third of the students they studies did not understand the concept of counter-examples and 18% 

of them thought a single counter-example was insufficient to disprove a claim (Battista & 

Clements, 1995).  

Harel & Sowder (1998) found something similar when working with University students. 

They did not have an axiomatic proof scheme, and relied on empirical and authoritative proofs. 

Even when reasoning deductively, students make inferences which do not follow from their 

premises. For instance, they conclude Q → P from P → Q (Sowder & Harel, 2003). Students also 

struggle to read proofs and to judge their suitability (Hoyles & Healy, 2007; Lin & Yang, 2007). 
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As mentioned above, students tend to believe that the reason you prove is in order to 

complete a task assigned by a teacher, or to verify something that you already know to be true 

(de Villiers, 1995) – there is no discovery associated with proof. 

I want to highlight two recent studies which attempt to construct models of student 

understanding of proof. The first is a model by Ahmadpour et al. (2019) shown in Figure 2. 

 

Figure 2 Students ways of understanding a proof 

The ovals represent states of understanding while the arrows represent transitions 

between states. The three ovals in the larger oval are possible end states of a students’ 

understanding of proof. Students can move forward or backward in this path, and can often even 

switch paths depending on context. 

Another model, by Miyazaki et al. (2017) is shown in Figure 3.  
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Figure 3 Framework for the understanding of deductive proofs. 

At the pre-structural level, students see proof as a cluster of symbolic objects empty of 

meaning. At this stage, students would answer a question such as “in order to prove that the base 

angles of an isosceles triangle ABC are equal, what theorems are needed in order to deduce 

ΔABD ≡ ΔACD?” (D is the midpoint of the side BC), with something a random singular 

proposition such as “BD=CD?”. 

At the partial-structural level, students need to recognize the elements of a proof along 

with some logical chaining relationships between the components. This involves an 

understanding of the distinction between premises and conclusions, and then understand two 

types of relationships which construct the chaining relationships, which they call Hypothetical 

Syllogism and Universal Instantiation. 

In the final Holistic-Structural level, students are able to reconstruct previously taught 

proofs, but also plan and construct their own proofs. They also begin to understand the 

relationships between theorems. 

Implications of Research for Proof Education. 

Given that students conceive of proof as verification or as doing an assigned task, it is 

clear that proof education is severely lacking. There have been efforts to improve this over the 

years. Polya and Fawcett are two early examples of that. Polya conceived of proof as problem 

solving (Polya, 1990). What he focused on were techniques and heuristics in order to conjecture 
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and prove such as using empirical means to come up with conjectures, generalizing conjectures 

in order to prove them more easily, and so on.  

Fawcett (1938) provides an extremely interesting example of mathematics education 

research. The research touches on things beyond proof, and I will return to this work in other 

sections as well. Fawcett created a course which was aimed at students constructing Euclidean 

Geometry. Students engaged, not just in coming up with conjectures and proofs, but also in 

laying out the axiomatic system on which their proofs were based. The results of the experiment 

seem to have been universally positive. Not just did students learn how to prove, but they also 

learnt the same amount of geometry that other students knew, as was demonstrated through tests 

after the experiment. The students who went through the course judged it to have had a 

significant impact on their lives many years after the fact (Flener, 2009). 

While both Polya and Fawcett achieved seeming success, the impact of their work on the 

actual Geometry course has been minimal (Herbst, 2002). More recent research into proof has 

seen a reconceptualization of the notion of proof, as mentioned above. Proof as a convincing 

argument, and the introduction of levels of proof and proof schemes give new tools to proof 

educators. Rather than thinking of students as being misconceived, these concepts allow us to 

locate students’ thoughts, reasoning, and motivation. 

Moving on to some specific areas of interest related to proof production in Geometry, 

generating examples of concepts has been hypothesized to help in proof production (Weber et al., 

2008; Watson & Mason, 2005). However, there has not been any significant effect found to this 

practice – indeed, it seems to be as effective as students studying given examples (Iannone, 

Inglis, Mejia-Ramos, Simpson, & Weber, 2011). However, in the same study, they do point out 

that the methodology of example generation might affect their result. 
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There has also been some research on empirical verification after proof, especially in the 

case of tasks name ‘proof problems with diagrams’ (Komatsu & Tsujiyama, 2013; Komatsu, 

2017), where statements are made in reference to a diagram. In such cases, a statement may be 

false or may require additional specifications since the diagram may contain certain hidden 

assumptions not made in the original statement. It also may be the case that examining examples 

after a proof may allow one to prove something more general. Komatsu (2017) presents the 

following diagram to aid in task design: 

 

Figure 4 Model for Empirical testing after proof 

The paper also suggests the following roles of the teacher: 

1. Prompting students to draw diagrams different from the given diagram, or 

presenting such diagrams 

2. Posing questions which move students to either revise the statement or proof 

3. Selecting students with ideas worth examining and getting them to present to the 

class 

Dealing with another class of proofs, namely existence proofs, Samper et al. (2016) 

suggests that such proofs are not intuitive. Usually, a student’s move is to impose the conditions 

on a randomly chosen object. The paper highlights the need for the teacher to play a role in 

mediation, and suggests that we cannot expect students to work through such proofs 
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autonomously without the help of a ‘more competent doer,’ a teacher who has worked through 

the details themselves. 

Definitions 

Closely related to proof is definition. As DeVilliers (1998) puts it, there are two ways of 

dealing with definitions: to teach definitions or to teach students to define. The latter does not 

imply that students ought to come up with every definition. However, learning to define is an 

important ability which students ought to learn. Freudenthal (1973) goes on to say that 

instructors are denying a learning opportunity for students by giving them definitions (as cited in 

Edwards & Ward, 2008). 

A Good Definition. 

What constitutes a good definition in mathematics? Edwards & Ward (2008), drawing 

upon work from van Dormolen & Zaslavsky (2003), give two sets of criteria for good 

mathematical definitions: necessary criteria and preferred criteria. The preferred criteria include 

minimality, elegance, and exclusion of degenerate cases. The necessary criteria come largely 

from Aristotle:  

1. Hierarchy: Objects must be special cases of other objects 

2. Existence: The object must be instantiated at least once 

3. Equivalence: Multiple definitions must be shown to be equivalent 

4. Acclimatization: The definition must fit into a deductive system 

Definitions and Concepts. 

As Vergnaud (1991) points out, a definition on its own will not enable a learner to 

apprehend and comprehend a concept (as cited in Ouvrier-Buffet, 2006). Rather, situations and 

problem solving give a concept meaning (Ouvrier-Buffet, 2006). Hence, the construction of 
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definitions requires students to play with a concept in various situations, extract the important 

aspects of that concept, and work with various representations of that concept before defining.  

Defining in geometry involves many different aspects. Unlike in other areas of 

mathematics, students have access to mental pictures and diagrams of the objects they are 

defining. However, this can also make things harder. Marrioti and Fishbein (1997) talk about 

harmonizing the conceptual and figural aspects of geometric objects. The paradigmatic example 

of this is that of a square and rectangle. Students, especially in elementary school (Bussi & 

Baccaglini-Frank, 2015; Kaur, 2015; Tsamir et. al., 2015), tend to see squares and rectangles as 

different entities rather than squares being a subset of the class of rectangles. There is a conflict 

between their perceptual experiences, the figural aspects, and the need to unify and generalize, 

the conceptual aspects (Bussi & Baccaglini-Frank, 2015; Mariotti & Fischbein, 1997). 

Implications of Research for Teaching Definitions. 

Tall & Vinner’s distinction between Concept Image and the Concept Definition (Tall & 

Vinner, 1981) has had a significant impact on the field of Mathematics Education Research. The 

Concept Image is the set of pictures, representations, properties and statements associated with 

concept in the learner’s mind. The Concept Definition is the actual definition of the object. The 

biggest impact is that it has shown that learning the definition is not enough – students need an 

understanding of the object the definition is referring to. 

Zandieh & Rassmussen (2010) use the Concept Image-Definition framework along with 

Gravemeijer’s (1999) RME activity framework described in an earlier section to create a 

framework for Definition as a Mathematical Activity (DMA). They use this framework to 

construct a series of activities which transition students from triangles on the plane to creating 



GEOMETRY EDUCATION 27 

and inquiring into the concept of spherical triangles. They use students understanding of flat 

triangles and get them to define spherical triangles which keep the same essence. 

Mariotti & Fischbein (1997) talk about two types of definitions: the basic objects of the 

theory and new elements within the theory defined in terms of the basic objects. These basic 

entities have a close relationship with the axioms of the theory. Using this and Fischbein’s 

conceptual-figural distinction discussed above, the paper proposes a pedagogy for coming up 

with definitions via a classroom discussion. This involves: 

• Observing 

• Identifying the main characteristics 

• Stating properties based on them 

• Returning to observations to check 

In a teaching experiment on defining and classifying quadrilaterals, Fujita, Doney, & 

Wegerif (2019) found that through a semiotic/dialogic process, students were able to transform 

their intuitions of what parallelograms were to an collective notion. Even though this notion did 

not necessarily agree with the conventional definition, students were able to use their definitions  

to solve other problems. 

Axiomatic Systems/Theories 

Since definitions and proofs only make sense within a theory/axiomatic system, it is 

important to touch upon education research into mathematical theories. Historically, there are 

broadly two conceptions of a mathematical theory, what Feynman (1965) calls the ‘Babylonian’ 

and the ‘Greek’ traditions. The Babylonian tradition conceives of mathematical theories as an 

interrelated network of facts, where you can derive many of the things you forget from things 

you know. The Greek tradition is axiomatic – there is small set of things we assume and we 
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derive a body of knowledge from that set. Formally, modern mathematics is in the Greek 

tradition. What both these traditions have in common is the commitment to relationship between 

statements of the theory. 

Gowers (2000) set out a distinction between Problem Solving and Theory Building in 

mathematics. The distinction he made was a matter of priorities. Problem Solvers understand 

mathematics to solve problems while Theory Builders solve problems to understand mathematics 

better. 

As Bass (2017) points out, there is not really much research on students constructing 

mathematical theories, especially before the undergraduate level. One exception is Fawcett 

(1938) who documents possibly the first attempt at the creation of a systematic course aimed at 

theory building. He starts with high school students listing geometric objects. Over the length of 

the course, this gets translated to a theory of space with definitions, undefined entities, axioms, 

and theorems. 

Other Types of Geometry 

Most of the examples given above are related to flat, gradient, 2D geometry. However, 

there has been some work on other types of geometry in the research literature. In this section, I 

will focus on 3D geometry, spherical geometry and discrete geometries. There are also other 

types of geometry such as projective geometry and paper folding geometry, which have been 

mentioned in the literature. 

3D Geometry. 

Sarfaty & Patkin (2013) found that Elementary school students are able to identify 3D 

shapes in their ‘typical positions’, but found it much harder to identify the same solid in different 

positions (Sinclair et al., 2016). Dynamic Geometry Environments (DGEs) give a new way to 
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work with 3D objects. The ability to drag and rotate makes it easier for students to get an 

understanding of these shapes (Leung, 2011; Sinclair et al., 2016). 

An interesting aspect of flat 3D geometry is the results which can be extended from 2D 

flat geometry. This includes results about centroids, medians, perpendicular bisectors, 

circumcenters, etc. (Mammana et al., 2009; Sinclair et al., 2016). There are also results like 

Varignon’s Theorem, that the midpoints of the sides of an arbitrary quadrilateral form a 

parallelogram, and Viviani’s Theorem, that the sum of the distances from an interior point to the 

sides of an equilateral triangle is constant, which generalize (Sinclair et al., 2016). The extension 

of these results can be explored through DGEs. 

Spherical Geometry. 

Spherical Geometry refers to a 2D geometry where the surface we are dealing with is a 

sphere. We are concerned with similar things as we would be in Euclidean Geometry, but we are 

constrained to the surface of a sphere. As mentioned at the beginning, the advent of Spherical 

and other geometries resulted in a significant change in the nature of mathematics. 

Lenart (2003), making the case for teaching different types of geometry alongside 

Euclidean Geometry, suggests that Spherical Geometry is especially useful since the sphere 

shape is prevalent naturally, most obviously in the shape of the Earth (Sinclair et al., 2016). 

Junius (2008) worked with students, moving them from an extrinsic view of straightness 

of lines to an intrinsic view. It requires us to take the intrinsic view to see great circles as 

equivalent to straight lines. 

Zandieh & Rassmussen (2010), as discussed in a previous section, worked on the notion 

of spherical triangles with students. They introduced the concept of a spherical triangle in stages, 

starting with planar triangles. 
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While there is some research in the area of Spherical Geometry for K-12 students, I have 

been unable to find much on other Elliptic Geometries, or on Hyperbolic Geometry. 

Discrete Geometries. 

Unlike Spherical Geometry, Discrete Geometry doesn’t refer to a single axiomatic 

system. Rather, it refers to a collection of geometries which are non-gradient. Some of these 

geometries have points with internal structure, such as geometry related to simplices or some 

pixel geometries. Others, such as geometric graph theory, do not. Taxi-cab geometry is one such 

geometry which has been used at the K-12 level (Ada & Kurtulus, 2012). 

Technology in Geometry Education 

While I have intermittently talked about technology in before this point, given the focus 

on it in the literature, it is worth having a short section focused on the topic.  

Various people have talked about the need for students being given the opportunity to 

explore (Polya, 1963; de Villiers, 2010). Virtual environments allow for that in ways which were 

unfeasible earlier. The ability to drag and rotate objects allows students to understand them much 

better (Hoyles & Jones, 1998; Soldano, Luz, Arzarello, et al., 2019; Laborde, 2005). 

Soldano, Luz, Arzarello, et al. (2019), through a game which involved moving objects 

around in order to achieve some goals such as constructing parallelograms, found that students 

seemed to develop certain forms of strategic reasoning helping them discover, refute and verify 

conjectures. Gol Tabaghi & Sinclair (2013) showed that Dynamical Geometry Environments can 

support students in their synthetic-geometric thinking, which refers to thinking about objects in 

space.  
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However, there are various issues with interface design, and various tradeoffs in different 

virtual geometry environments between things like functionality and complexity (Mackrell, 

2011; Sinclair et al., 2016). 

 

Conclusion 

In this paper, I have attempted to give an overview of the state of research on some 

aspects of geometry education of the last few decades. If there has been any shift in the nature of 

the research, it has been in the importance given to student conceptions and understanding. The 

clearest example of this is the case of proof. Early research was on instructional design. This 

moved to research on students conceptions of proof, but only looking for their deviation from the 

norm. It is only since the 1990s that serious attention has been given to actual students’ 

conceptions, and not treating them as deviations.  

There has been a large amount of research in areas like proof, defining, and spatial 

reasoning. However, there are many unanswered questions. For instance, we still don’t have 

good ways to transition students to seeing value in a deductive proof scheme. There is also a lot 

we don’t know about sensitizing students to the nature of a good definition.  

There is also a lot we don’t know about curricular sequencing. Piaget’s idea of age based 

sequencing and the van Hieles’ level based sequencing are two ideas we currently have, both of 

which have received significant critiques. 

There are other areas of geometry, such as non-Euclidean geometries and theory building, 

which are only just entering the field in a significant manner. Given that these areas are in their 

infancy, there is a lot of work left to do.  
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Advances in technology will constantly give us newer tools with which we can explore 

geometry. Virtual reality has not been used very widely yet in the field. However, once prices 

drop, that will probably change.  

That is not to say that earlier research isn’t valuable. Fawcett’s work (Fawcett, 1938) is 

still one of the most interesting ideas for geometry education. Similarly, Polya’s work (Polya, 

1963; 1978; 1979; 1990) has many insights which we should be making use of. 
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