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Introduction to Mathematical 
Thinking and Inquiry 

Mathematics education, especially at the school level but also in undergraduate education, 
has largely focused on the following: 

1. Understanding an existing body of  mathematical knowledge 

2. Learning some mathematical procedures and techniques of  the form a computer 
could carry out 

3. Applying the existing body of  knowledge and the procedures/techniques 

The abilities required by mathematical researchers are: 

A. Coming up with conjectures 

B. Validating/disproving those conjectures by searching for counter-examples 

C. Coming up with proofs for those conjectures 

D. Extending conjectures outside their domain of  applicability to see if  they have 
broader applicability 

E. Setting up systems of  axioms and defining objects 

F. Evaluating proofs 

So, the mathematical abilities acquired in educational institutions (if  there are any) largely 
have no relationship to the mathematical abilities required by researchers. Notice that the 
abilities required by researchers all require creativity. Even F is not always formulaic. 
Otherwise, a computer would be validating proofs rather than a community of  
mathematicians. Creativity is largely absent in the case of  education and in some cases is 
actively discouraged. 

A few years ago, I setup an online learning/assessment platform, which would teach/test 
mathematical skills/procedures. The aim of  this was that the computer could deal with 
teaching students these skills (which are required for examinations), while teachers (who 
otherwise waste a lot of  time on grading and teaching these skills) could work on 
mathematical abilities. This was not happening. I soon realised that this was because there 
were no appropriate materials available to teach these abilities from. Books by people such as 
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Polya, in their current form, are slightly out of  reach of  most middle and high school 
students.  

This book is a start to a project aimed at addressing mathematical abilities required for 
research. Though written in a way accessible to fifteen year old students, this book can be 
useful for teacher education, individuals interested in mathematical thinking, college students 
studying related disciplines, as well as first year mathematics undergraduates. Since the book 
does not really require much pre knowledge, it may also be useful for some younger students 
with a keen interest in mathematics. 

Mathematical thinking, though obviously useful to aspiring mathematicians, has wider 
applicability. My sessions with students, using the contents of  this book, have brought out 
basic logical difficulties they face. For example: 

• the relationship between P -> Q and Q -> P, 

• the concept of  ‘only if ’, and 

• when an example will suffice to prove/disprove a statement and when you require a 
justification 

Also, tools such as generalising within a system, extending outside of  a system, defining 
objects precisely, and clearly stating your assumptions/premises/axioms are all useful outside 
of  mathematics. 

As mentioned, this book is just a start, and there is a long way forward for all of  us who are 
convinced of  the need to include mathematical thinking and inquiry as an important 
component of  school and college education. Some of  the crucial parts of  this are: 

I. Making explicit intuitions and heuristics mathematicians use – This is not easy and 
might not always be possible. However, there might be certain pointers mathematicians 
can give students, after introspecting, on how to arrive at conjectures or proofs. It might 
be the case that some ways of  proceeding work for some students while other ways work 
for others. Hence, it is important that a large number of  mathematicians engage in this 
exercise. Some basic techniques of  proceeding are outlined in this book such as when 
and how to generalise or where you should be looking to extend results or taking simple 
examples in order to find patterns. 

II. Creating mathematical theories appropriate for students being introduced to 
mathematics – Things like Euclidean geometry and the study of  the reals are not 
necessarily ideas which should be broached at the school level. Points being zero 
dimensional or the various counter intuitive results which result from real analysis are 
not appropriate for students. Even calculus as it is currently taught is not useful to our 
purpose since students will not be able to come up with many conjectures or come up 
with proofs in calculus. The mathematical theories, which need to be constructed for 
students, will largely not be interesting to mathematical researchers. They must be 
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theories which students can construct right from axioms and definitions to proofs (with 
guidance). The theory this book is based on might reside on a Euclidean plane, but 
takes straight lines as primitives rather than points, and does not have the concepts of  a 
curved line. (In fact, you do not need the entire continuum of  the Euclidean plane to 
construct this geometry. The concluding chapter contains more about this). As far as 
possible these theories should address a question, which students can understand 
through their experience, such as Euler’s bridges of  Konigsberg problem. 

III. Creating Learning Resources based on I and II – Once theories are developed, material 
has to be created to transfer mathematical abilities, along with possible heuristics, to 
students. These need to be developmentally appropriate as well as interesting. These 
materials include self-learning material for students such as online courses, books, video 
and audio, and material for teachers such as lesson plans, resource packs and textbooks. 
An example of  such material outside of  this book could be resources aimed at students 
constructing Graph Theory through examination of  real world situations. 

IV. Convincing schools, school systems and governments on the need for these materials – 
Once learning resources are created, they must be used in schools in order to convince 
people of  their utility and usability. These sessions should be recorded and made 
available publicly so that support builds for their use. There are entrenched beliefs and 
interests which will protect the current system.  

V. Creating teacher development programmes for using these materials – Once materials 
are created for students, the same materials can be used for teacher education coupled 
with pedagogical and assessment strategies. 

To accomplish I-V we need mathematicians, educators, policy makers, and teachers to work 
together 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Paper Folding - Right Angle 
 

Take a blank piece of  paper 

 

Fold it over once. It will look something like: 
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Now, pick a point on the edge you folded. The point you 
picked is represented by the letter B on the image below. 
A and C are the end points of  the line you created with 
your first fold. 
Fold the paper 
again such that 
line BC is on top 
of  line AB 

Open up the second fold. You will see that both the angles here are right angles as below: 
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Is this always the case or can you find an example where, by following the same procedure, 
you get a different result? If  you can find such an example, it is called a counter-example. We 
will get back to that later. 

The statement you consider to be true is called a conjecture. State what you consider to be 
true clearly. 

If  you fail to find a counter-example, and you are convinced that this must be true, the 
statement is called a plausible conjecture.  

What You Did in This Section 
1. Found a pattern in a procedure you completed 

2. Stated what that pattern was 

3. Introduction to the words conjecture, counter example, plausible conjecture 

Some Help 
The conjecture: 

If  you follow the given folding procedure on a piece of  paper, and open the paper, the creases 
formed by the folding are perpendicular to each other (intersect at right angles) 
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Paper Folding - Colouring 

Take another sheet of  paper. Fold 
it over and open it. Now fold it 
again in a different place and 
open it. Go crazy doing this 
again and again. Finally you will 
have a sheet of  paper which looks 
something like: 

 

You will see a large variety of  
shapes which have been 
created by these lines. We will 
call these shapes ‘regions’.  
Some examples are outlined in 
the image 
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The question we are asking is: Given a bunch of  colours, what is the least number of  colours 
required to colour the regions such that no two neighbouring regions share the same colour? 

The first thing you must be clear about is the wording of  the question. The one phrase in the 
question which might appear to be vague is 'neighbouring regions.' What are neighbouring 
regions? 

Think about your classroom. Clearly, the people to your left and right are your neighbours. 
How about people in front and behind you? Are they your neighbours? See the image below: 

Define neighbour such that only the coloured dots 
around you are your neighbours: 
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Now, lets look at the people diagonally situated to you. Are they your neighbours? See the 
image below: 

Define neighbour such that only the coloured 
dots around you are your neighbours: 

 

Now, lets take a third conception of  neighbours: 

Define neighbour such that all of  the coloured dots 
around you are your neighbours: 

PAPER FOLDING - COLOURING "11



Let’s be clear about what we mean by neighbouring regions. For now, let’s say that two 
regions are neighbours if  they share an edge in common. 

Go back to your sheet of  paper. Try colouring it in so that you are using the least number of  
colours. This seems a little too hard, doesn't it? 

The first thing a mathematician would do in this case would be to generalise the situation. 
Rather than looking at your specific configuration, a mathematician would ask the question: 
If  you followed the procedure above, given n folds, what would be the minimum number of  
colours required to colour the sheet such that no two neighbouring regions have the same 
colour? Put down any ideas you might have: 
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One way a mathematician would proceed 
is to try a few simpler examples in order to 
find a pattern. Take another sheet of  
paper (hopefully, you are using scrap 
paper for this activity and not wasting 
brand new sheets) and fold it once. Now 
try and answer the above question for this 
configuration. 

Now try two folds and so on. Have you come up with a possible answer in general? State this 
as a conjecture in precise language. We will get back to this later. 

What You Did in This Section 
1. Tried to answer a question by going through various complex examples 

2. Clarified the meaning of  some words in the question 

3. Generalised the question 

4. Tried out simple examples of  the generalised question 

5. Stated a conjecture in response to the question 

Some Help 
The conjecture could take the form: 

If  you follow the folding procedure above, the most number of  colours required to colour the 
paper, such that no two neighbouring regions have the same colour, is _______. 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My Maternal Grandmother 
Here is a conversation which was overheard at a bank: 

Jomo: "I’m Jomo. Its nice to meet you. While we are waiting in line, let me tell you a little bit 
about myself. I was born when my mother gave birth to me. When I was three, my brother 
was born. At the age of  four, I started school and when I was five, my biological maternal 
grandmother was born. There was a lot of  celebration on this occasion and there was a huge 
party..." 

Miko: "Stop Lying!" 

Jomo: "Are you saying I am lying about when my brother was born?" 

Miko: "Maybe." 

Jomo: "So then, how are you so sure I am a liar, if  all you are saying is 'maybe'?" 

Miko: "You are lying about your grandmother." 

Jomo: "How can you be so sure? Anyways, I'm really insulted by what you are saying." 

What is so different about the two claims made above, about Jomo's brother and Jomo's 
biological maternal grandmother? Is Miko right in saying that Jomo is lying about her 
grandmother with so much surety? Why? 
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The first thing we need to do here is to be very clear about the claim we are troubled by. Let’s 
restate it: 

"Jomo was five when her biological maternal grandmother was born" 

Are we troubled by the 'five'? What if  it was 'four' or 'three'? Would you be satisfied? Why or 
why not?  

It wouldn't matter. Let’s restate more clearly what is troubling us: 

"Jomo was born before her biological maternal grandmother was born." 
Now, as we did in the last section, we need to define certain words, namely 'biological 
maternal grandmother.' To do this, lets first try and define 'biological mother.' 

"Jomo's biological mother is the person who gave birth to Jomo" 
So, lets try defining biological grandmother: 

"Jomo's biological grandmother is the person who gave birth to Jomo’s mother.” 
We can also write this as: 

"Jomo's biological maternal grandmother is Jomo's mother's mother.” 
Is this enough to prove that Jomo's claim is false? Why can't somebody be born before the 
person who gave birth to them is born? 
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It's very hard to answer why. So, lets just take that as an assumption that a person cannot be 
born before the person who gave birth to them is born. In mathematics, this sort of  
assumption is called an 'axiom'. Let us all it Axiom 1.  

Axiom 1: If  X gives birth to Y, then X was born before Y 

So, what is our final argument? Lets try putting it down clearly: 

1. Assume Jomo's maternal grandmother was born after he was. 

2. We know that Jomo's maternal grandmother is Jomo's mother's mother, so Jomo's 
maternal grandmother gave birth to Jomo's mother, from our definition of  mother. 

3. From Axiom 1, Jomo's maternal grandmother must be born before Jomo's mother. 

4. Similarly, Jomo's mother must be born before Jomo. 

5. So, Jomo's grandmother must be born before Jomo, which contradicts statement 1. 

The argument given above is a 'Proof  by Contradiction’ since we showed that assuming a 
certain statement is true, it must be false as well. Since a statement can't be both true and 
false, the initial statement must be false. 

There were also some other axioms in our argument which we smuggled in implicitly. Can 
you figure out some of  them? (Hint: One of  them concerns relationships of  birth order) 

 

MY MATERNAL GRANDMOTHER "16



You have seen how a mathematician would approach a problem. Now, how would a scientist 
answer the question we posed in this section, and answered by just thinking about it? How is 
science different from mathematics in this regard? (Think about the concept of  sampling) 

Take a look at the following claims. Which of  these could be true? Which of  these are false 
for sure? Which of  these are true for sure? Why? Articulate your reasons precisely from 
axioms and definitions. Compare your proofs with those of  your friends and critique each 
others' work. 

A. My younger brother was born after me. 

B. My younger brother was born 2 years after me 

C. My aunt was born before me 

D. My aunt was born after me 

E. My older brother was born before me 
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What You Did in This Section 
1. Compared the surety of  truth of  two different questions 

2. Generalised a statement we were troubled by in order to bring out clearly what 
bothered us 

3. Introduction to the concept of  axiom 

4. Clearly stated an axiom 

5. Introduction to the concept of  proof  

6. Clarified and defined words in the statement precisely 

7. Example of  a proof  from axioms and definitions 

8. Considered the difference between scientific and mathematical proof  

9. Tried to find hidden axioms in our proof  

10. Went through examples of  various statements to apply what we learnt in the rest of  the 
exercise  

Some Help 
One possible hidden axiom in our proof  was that if  A is born before B and B is born before 
C, then A is born before C. Lets call this ‘transitivity of  birth order’. 
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Creating Worlds 
In the previous section, we attempted to set up a mathematical world, by defining objects 
precisely and setting up a system of  axioms. What we then did was to try and figure out the 
logical consequences of  these axioms on the objects. 

Now, lets move away from mothers, grandmothers and brothers, and instead return to a 
similar situation to the first two sections. 

The worlds we will be operating in from now on are similar to that of  your folded piece of  
paper. We will be working on a flat surface. We will be a little more precise about it later. 
What you have in this world are points and straight lines, similar to those in your world of  
paper folding. 

We have two possibilities of  worlds based on their size: 

1. a finite world with definite boundaries, like your sheet of  paper. 

2. an infinite flat world which goes on forever in all directions 

We also have three possibilities, based on the length of  the straight lines 

A. only finite straight lines allowed (what are also called line segments) 

B. only infinite straight lines allowed, which go on forever in both directions 

C. both finite and infinite lines allowed 

If  not specified later, by default, assume we are working in a world which satisfies condition 2 
and condition C. These are some of  the axioms of  this world 

I am setting one other condition in this world: not more than two lines can intersect at a given 
point. This gives us another axiom. 
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Based on the conditions set so far, let me ask you a questions: Given 4575 straight lines and 
exactly 25 points of  intersection per line, what are the total number of  points of  intersection? 
Write what comes to your mind: 

This sounds like an exceptionally hard problem, just like the colouring problem in the second 
section. Lets do what we did there and generalise. Try and state a general version of  the 
above question before you look below: 

"Given n straight lines and exactly i points of  intersection per line, how many points of  
intersection are there in total?" Is your phrasing of  the question saying the same thing? 

There are still a few ambiguous concepts in this phrasing. Lets start with the word 
'intersection.' Lets define a pair of  intersecting lines as a pair of  lines which have a finite 
number of  points in common. 
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The obvious question which this leads to is: Can two intersecting straight lines have two 
points in common or three points and so on? Do you think this is possible? Why or why not? 

Intuitively, it is probably obvious to you that two straight lines cannot have 2 or 3 or any other 
finite number of  points in common. They can only have one point in common. However, in 
mathematics, intuition can only point us towards a result. We need a rigorous proof  from 
axioms and definitions in order to move forward. 

You have some choices here. You could either assume this to be an axiom, or you could state 
some axioms from which you can prove this. In mathematics, one of  the aims is to make the 
axioms as simple as possible. So, we should try creating an axiom to prove this. 

Consider the axiom, “Given two distinct points, there is only one straight line which starts are 
one of  the points and ends at the second one.” Is this good enough or do you need to add in 
another few axioms?  
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Try and prove the conjecture using your axioms and definitions like we did in our proof  in 
the previous section 

(Hint: The first thing you will have to do here is to define straight line. This is a lot harder 
than you think. Consider the idea of  'shortest distance') 

What You Did in This Section 
1. Set up various worlds 

2. Decided which world we would be operating in 

3. Asked a question in that world 

4. Generalised that question 

5. Clarified the generalised question 

6. Speculated on the answer to the question 

7. Proved a statement we might have found intuitive 

8. Defined an object precisely 

Some Help 
Proof  to the Conjecture that a pair of  distinct straight lines can have at most one point in 
common: 

Axiom: Given two distinct points, there is only one distinct straight line starting at one point 
and ending at the other. 

Assume a two straight lines intersect with each other at more than one point. If  you start from 
one end of  any of  the lines moving towards the other end, the points of  intersection will 
come one after the other.  

CREATING WORLDS "22



Take the first two points of  intersection (we can do this since there can only be a finite 
number of  points of  intersection by our definition of  intersection). Let these points be called 
A and B. 

Definition: A straight line is the shortest distance between any two points. 

Let AB be the straight line between A and B. Since AB is the shortest distance between A and 
B, it must be a part of  both of  the lines. Hence, the two lines do not have a finite number of  
points in common. This contradicts our definition of  intersection. 

Hence, two lines can have at most one point of  intersection in common. 
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Engaging with our Question 
Lets return to the generalised version of  our question: 

"Given n straight lines and exactly i points of  intersection per line, how many points of  
intersection are there in total?" 

Lets continue with what we did in the colouring section, and take some simple examples. 
How about 1 straight line and 0 points of  intersection per line? Thats easy, right? Take a 
straight line, finite or infinite, and place it on our flat surface. It will have no points of  
intersection. How many are the total points of  intersection? Well they will also be 0. 

Now, take the case of  1 straight line and exactly 1 point of  intersection per line. Try drawing 
a representation of  this case 

I'm trying really hard but I just cannot create this configuration. Maybe we should try 1 
straight line and exactly 2 points of  intersection per line. 

This also seems really hard. I just can't do it. Can you? Try it out. 

ENGAGING WITH OUR QUESTION "24



There is something going on here. I'm suspicious. I'm beginning to think that if  the number 
of  intersection per straight line is greater than or equal to the number of  straight lines, the 
configuration is impossible to create! Is that true? Can you prove it from a result we arrived to 
in the last section? (Hint: try proving first that given n straight lines, no one straight line can 
have more than (n-1) intersections) 

So, maybe we need to re-look at our question. The question asks us how many points of  
intersection there are of  a given configuration. However, if  there are situations where the 
configuration is not possible, the question is meaningless. 

So, lets ask a more fundamental question before we move on to the question above: "Given n 
straight lines and exactly i points of  intersection per line, is it possible to create such a 
configuration?" Write your reflections on what you think the answer to this new question is. 
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What You Did in This Section 
1. Explored simple examples of  our generalised question 

2. Realised that our question might not be valid 

3. Created a new question which we will need to answer before we can answer our original 
question 

Some Help 
Proof  that the number of  points of  intersection per line has to be less than the total number 
of  lines: 

Given n straight lines, take one of  the lines and call it m. There are n-1 lines left. m can 
intersect with a single straight line at most at one point (from the theorem we proved in the 
last section). Hence, m can intersect with n-1 straight lines at most at n-1 points. Since, we 
cannot create a configuration where a single line can have more than n-1 points of  
intersection, we certainly cannot create a configuration where all the lines have n-1 points of  
intersection. 
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Testing Our Conjecture 
In the last section, we found a situation when we could not construct a configuration and we 
proved that we could not. That was in the case that the number of  points of  intersection per 
line was more than or equal to the number of  straight lines. This was kind of  obvious. So, 
maybe in every other condition we will be able to create the configuration? 

Lets state our new conjecture: "Given n straight lines and i points of  intersection per line, you 
can create this configuration if  and only if  n > i." 

There is a new term we have used above: 'if  and only if.' What does this mean? I'm sure you 
know what each of  the component words of  this term means, but try and mull over what the 
entire term means and write down your thoughts before you proceed: 

Whenever you see 'if  and only if,' break up the entire statement into two parts, like: 

1. Given n straight lines and i points of  intersection per line, you can create this 
configuration if  n > i 

2. Given n straight lines and i points of  intersection per line, you can create this 
configuration only if  n > i 

Does this make things clearer? 

Lets try and rephrase 2: 

3. If  n is lesser than or equal to i, you cannot create a configuration of  n straight lines and 
i points of  intersection per line. 
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Are 2 and 3 logically equivalent? Why or why not? 

For the original conjecture to be true, both 1 and 2 must be true. If  either 1, 2 or both are 
false, the conjecture is false. We already proved 3 in the last section, which is equivalent to 2. 
Now, lets inquire into 1, and continue with examples. 

Before we go forward, lets introduce some notation to make things less cumbersome. Let (n,i) 
represent a configuration of  n straight lines and exactly i points of  intersection per line. Then, 
we can re-state our question as: 

“Is (n,i) a possible configuration?” 

We can re-state 1 as: “(n,i) is a possible configuration if  n > i” 

The example we had stopped at was (1,1). Lets ignore any configuration where n <= i. Try 
the following: (2,1) and (3,1). Remember the condition we had set in a previous section that 
not more than two lines can intersect at a given point. (2,1) seems easy.  

Can you prove it is possible? (Hint: To prove something exists, you just have to construct it). 

TESTING OUR CONJECTURE "28



So far so good. It seems that our conjecture is working. How about (3,1)? Can you construct 
(3,1)? 

(3,1), which looks easy at first glance, might not be easy. Can you prove that (3,1) is not a 
possible configuration? (Hint: Make two lines intersect with each other and think about what 
becomes of  the third line) 

So, now what happens to our conjecture? We have found an example which contradicts 1 and 
hence contradicts the conjecture. This is another instance of  a 'counter-example.' It requires 
just one counter example to show that a conjecture is false. Now, the conjecture has either to 
be amended or it must be thrown in the trash. Mathematicians have to be willing to discard 
their hard work in coming up with a conjecture even if  there is just one counter-example. Lets 
throw it away for now! 
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Can you find Counter-examples to the following conjectures? If  not, can you attempt to prove 
them: 

1. (n,1) is always a possible configuration for all n 

2. (n,1) is always a possible configuration if  n > 1 

3. (n,1) is always a possible configuration if  n > 3 
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4. (2,i) is always a possible configuration for all i 

5. (2,i) is always a possible configuration for 2 > i 

6. (3,i) is never a possible configuration for any i 
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What You Did in This Section 
1. Stated a conjecture to answer a question 

2. Explored examples of  that conjecture 

3. Found a counter example to that conjecture 

4. Explored the concept of  counter example 

5. Tried to explore various conjectures 

6. Introduced notation to make statements less cumbersome 

Some Help 
2. Given n straight lines and i points of  intersection per line, you can create this configuration 
only if  n > i 

3. If  n <= i, you cannot create a configuration of  n straight lines and i points of  intersection 
per line. 

Are 2 and 3 logically equivalent? 

If  a statement S is true only if  another statement T is true, then S must be false if  T is false. 

So, if  T is false S must be false. 

Is (3,1) a possible configuration? 

Conjecture: (3,1) is not a possible configuration 

Proof: Call the lines a,b and c. Take a and b. These two lines can at most intersect with each 
other at one point (from a previous theorem we proved). Now, we have two cases 

1. a and b intersect at no points 

2. a and b intersect at exactly one point 

Lets take case 1 first. a and b do not intersect and we only have c left. We have 4 possible 
cases 

I. c does not intersect with either a or b - this does not satisfy the conditions of  (3,1) as 
each of  the lines have no points of  intersection 

II. intersects with only a - this does not satisfy the conditions of  (3,1) as b has no points of  
intersection 

III. c intersects with only b - this does not satisfy the conditions of  (3,1) as a has no points of  
intersection 

T True T False

S True Statement either True or False Statement is False

S False Statement either True or False Statement is True
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IV. c intersects with a and b - this does not satisfy the conditions of  (3,1) as c has two points 
of  intersection 

Now, lets take case 2. If  a and b intersect exactly at one point, we have the same possibilities 
for c 

I. c does not intersect with either a or b - this does not satisfy the conditions of  (3,1) as c 
has no points of  intersection 

II. intersects with only a - this does not satisfy the conditions of  (3,1) as a has two points of  
intersection 

III. c intersects with only b - this does not satisfy the conditions of  (3,1) as b has two points 
of  intersection 

IV. c intersects with a and b - this does not satisfy the conditions of  (3,1) as a, b and c have 
two points of  intersection. 
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Generalising Conjectures 
Lets re-state our question: Given two Natural Numbers n and i, Is (n,i) a possible 
configuration? (Given the notation we developed in the previous section) 

We have two variables in our question, n and i. One way to proceed in trying to find patterns 
is to keep one of  the variables constant and change the other. We have kind of  tried doing 
that with n. We tried (2,0), (2,1) and (2,2), and found some were possible but others were not. 

Just for now, lets try keeping i constant. First lets try (n,1). 

We know that (1,1) is not possible, but (2,1) is. We also know that (3,1) is not possible. How 
about (4,1) and (5,1)? While proving these, keep in mind the proofs of  (2,1) and (3,1). 

1. (4,1) is possible/impossible 

2. (5,1) is possible/impossible 
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3. (6,1) is possible/impossible 

4. (7,1) is possible/impossible 

Do you see a pattern emerging? Can you state it as a conjecture? Try and state it as an ‘if  and 
only if ’ conjecture. (Hint: You will see (n,1) is possible for some values of  n but impossible for 
others. Try and think about what sort of  values of  n it is possible for what values it is not 
possible for. Look at the proof  for (2,1) existing and (3,1) not being a possible configuration 
and see how they can be generalised) 

For all n > 1, (n,1) is possible if  __________ 

For all n > 1, (n,1) is possible only if  __________ 

For all n > 1, (n,1) is possible if  and only if  _________ 
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Now, try and prove the conjecture: 

Proof  for: For all n > 1, (n,1) is possible if  __________ 

Proof  for: For all n > 1, (n,1) is possible only if  __________ 

Proof  for: (n,1) is possible if  and only if  __________ 

For all n > 1, (n,1) is possible if  __________ 

And, For all n > 1, (n,1) is possible only if  __________ 

Hence, For all n > 1, (n,1) is possible if  and only if  __________ 

What we did in this section was to take some examples, (2,1), (3,1), (4,1), (5,1) etc. For some 
we proved that the configuration was possible, while for others we proved that it was not. In 
the numbers for which it was possible, we found a pattern. We also saw a pattern in the 
numbers for which it was not possible. So, we were able to generalise from a few examples to 
all n > 1. This is somethings mathematicians do all the time. They find a bunch of  patterns, 
and prove conjectures. Then they try to find patterns in those conjectures, and try to state a 
more general conjecture. 

GENERALISING CONJECTURES "36



What You Did in This Section 
1. We decided to explore a family of  examples of  our Conjecture 

2. We came up with a conjecture on that family of  examples 

3. Introduction to ‘if  and only if ’ 

4. Proved our conjecture 

Some Help 
For all n > 1, (n,1) is possible if  n is even 

For all n > 1, (n,1) is possible only if  n is even 

For all n > 1, (n,1) is possible if  and only if  n is even 

Proof  for: For all n > 1, (n,1) is possible if  n is even 

If  n is even, you can break the lines into pairs (from the definition of  even). For each pair, 
make the two lines in that pair intersect. Now, each of  the lines have exactly one point of  
intersection. Hence, (n,1) is possible if  n is even. 

Proof  for: For all n > 1, (n,1) is possible only if  n is even 

We can translate this conjecture into: For all n > 1, if  n is odd, (n,1) is not a possible 
configuration 

Take any of  the n lines. It has to intersect with exactly one other line for the configuration to 
work. Once you make two lines intersect at one point, no other line can intersect with either 
of  those two lines. Otherwise, the lines would have more than one point of  intersection. You 
can keep doing this. You will see that what you are forced to do is to pair up lines. Finally you 
have one line left, which will cannot intersect with any other line since they already have one 
point of  intersection. Hence, it is impossible to create (n,1) if  n is odd. 

Proof  for: (n,1) is possible if  and only if  n is even 

Since For all n > 1, (n,1) is possible if  n is even 

And, For all n > 1, (n,1) is possible only if  n is even 

Hence, For all n > 1, (n,1) is possible if  and only if  n is even 
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Extending A Result 
When a conjecture is proved, it is called a theorem. In the last section we proved that: 

“if  n > 1, (n,1) is possible iff  n is even” 

(iff  stands for if  and only if) 

Maybe the same result could work for (n,2). What we are doing here is taking a result with 
one domain of  application and applying it in a new situation. However, when you do this 
remember to be very careful and prove the result again. What was a theorem in one situation 
is now just a conjecture. Lets state our conjecture: 

“if  n > 2, (n,2) is possible iff  n is even” 

The first thing we need to do here is to break up the conjecture into it two components. 

1.	 if  n > 2, (n,2) is possible if  n is even 

2.	 if  n > 2, (n,2) is possible only if  n is even 

Lets attack 1 first. For 1, we only have to consider even n. Start with 4. Since we are only 
asking for existence, all we have to do is construct a configuration of  (4,2): 
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Now try (6,2). Try taking your construction of  (4,2) and extend it to (6,2). 

Can you now think of  a general way to construct (n,2) when n is even? Write out your 
description of  the construction. 

So far, so good. We seem to have a proof  for 1. How about for 2? 

2: if  n > 2, (n,2) is possible only if  n is even 

Lets re-state 2 in terms of  odd numbers 

2’: if  n > 2, (n,2) is not possible if  n is odd 

Note: This is only possible because if  a number is not even, it must be odd. However, if  rather 
than even and odd. It was leaves a remainder of  0 when divided by 4 and leaves a remainder 
of  1 when divided by 4, if  the conjecture was: if  n > 2, (n,2) is possible only if  n is divisible by 
4, we could not translate it to: if  n > 2, (n,2) is not possible if  n leaves a remainder of  1 when 
divided by 4. So, lets translate from 2 to 2’ step by step: 
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2: if  n > 2, (n,2) is possible only if  n is even 

if  n > 2, (n,2) is not possible if  not (n is even) 

if  n > 2, (n,2) is not possible if  n is not even 

all numbers which are not even are odd 

2’: if  n > 2, (n,2) is not possible if  n is odd 

In this case, you are being asked to show something is not possible. You can prove the 
statement to be false by just providing a counter-example - which in this case would be a 
single construction of  (n,2) for some odd n. 

Try (3,2) and (5,2). Are any of  them counter-examples? Try drawing them 

What this shows us is that we need to be very careful when extending results outside their 
initial domain of  applicability. We have shown that 2 is false and hence our initial conjecture 
in this section was false. 

Maybe (n,2) is not just possible for n even. It might also be possible for n odd. However, take a 
look at your proof  of  1 for n even. Can that proof  be extended to n odd. Try stating your 
construction for all n precisely: 
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So, in some cases we can extend results without a problem. Trying to extend results to new 
domains is a great tool for mathematicians to quickly figure things out about their new world. 
However, it is also something fraught with danger if  you aren’t very careful. 

What You Did in This Section 
1. We attempted to extend a result outside its domain of  application 

2. We explored that result in our new domain of  application and found a counter example 

3. Our wrong conjecture, however, gave us a direction in which to inquire 

4. We extended a proved conjecture outside its domain of  application and found that it 
worked 
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Uniqueness 
Lets look at some examples from the previous sections. Look at (4,2). We know we create it by 
just creating a square. However, is a square the only way to create (4,2)? Try finding another 
way: 

You have probably realised that rectangles work as well as squares, and so do trapeziums and 
parallelograms. In fact (4,2) can be created by any quadrilateral. The question which comes 
to mind is: Can (4,2) only be created by a quadrilateral, or are there other ways to create 
(4,2)? How about (5,2)? 
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Now try (6,2)? Is there more than one way of  constructing (6,2)? (Hint: Take a look at the 
construction of  (3,2)) 

Can you state a general conjecture for when there is only one way to construct (n,2) and when 
there is more than one way? 

Now, how about if  I put forward this conjecture: 

“(n,2) can only be constructed by a combination of  one or more polygons.” Is this true? Can 
you try and prove it? (Try defining ‘polygon’) 
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What You Did in This Section 
1. We came up with a question as a result of  a result related to another question 

2. We explored examples of  our new question 

3. Introduction to the concept of  uniqueness 
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Proceeding From Here 
There is a lot left in order to completely answer the problem we set for ourselves. Till now, we 
have only been able to address a few examples. The rest of  the problem is for you to engage 
with.  However, let me give you some ways to think about how to proceed. Our generalised 
statement had two numbers, represented by n and i. If  we proceed like we have so far, 
addressing specific values of  n and i, we will not get very far. If  we wish to completely answer 
the question, we need to completely classify possibilities for n and i in such a way that the 
number of  classes is finite.  For example, a finite classification could be one which has the 
following three classes:  

A. Where n is divisible by 3 

B. Where n leaves a remainder of  1 when divided by 3  

C. Where n leaves a remainder of  2 when divided by 3. 

Humans have finite lifespans, so this is the only way that we can make a serious dent in the 
problem. This classification must also tell us something about the problem, however, this is 
only something we will know after the fact. The above classification might be useful or it 
might not. We can take a look at the examples we have taken so far and see whether they 
indicate the usefulness of  such a classification or not. An example of  usefulness in the above 
classification would be if  we find out: In all cases of  A and B, the configuration is possible, 
while in C it is not. If  this works, it completely answers our question. 

An additional possibility is trying to return to our original question, which asked ‘how many 
points of  intersection are there?’ Sometimes, answering related questions could give us an 
insight into the question we are dealing with.
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